
TP Evalué.

On cherche à dater un massif granitique situé au nord de Clermont-Ferrand, dans le massif central. Massif de Meymac : localisation des points d'échantillonnage

Droits réservés - © 1983 J.-C. Talbert, J.-L. Duthou

<u>Partie 1</u>: Après avoir rappelé le principe de datation absolue, proposez une démarche pratique visant à déterminer l'âge de ces granites.

- Le principe de datation absolue utilise <u>la loi de désintégration</u> radioactive appliquée à un <u>couple</u> <u>d'isotopes</u> : un élément père, radioactif, se désintégrant en un élément fils, stable, à vitesse constante.
- plus le temps passe, plus l'élément père diminue tandis que l'élément fils augmente de façon exponentielle.
- La mesure du rapport des 2 éléments <u>permet d'évaluer le temps écoulé</u> depuis <u>la fermeture du système</u> : mort pour un être vivant, refroidissement pour une roche magmatique.

Dans le cas de la datation d'un granite, on va utiliser <u>le couple rubidium 87/strontium 87</u> dont la période de demi vie est très grande. (Temps écoulé pour que la moitié des éléments pères ait disparu)

Comme la <u>quantité de 87Rb varie en fonction des minéraux</u> et que <u>la quantité de 87Sr est non nulle</u> mais égal dans les différents minéraux au départ (t0), on va mesurer les rapports de ces 2 éléments avec un élément stable 86Sr.

Si on reporte ces données dans un tableur (ou un logiciel), on trace <u>un graphique</u>: ${}^{87}Sr^{/86}Sr$ en fonction <u>de</u> ${}^{87}Rb/{}^{86}Sr$, on obtient une <u>droite</u> reliant les rapports effectués pour chaque minéral, de même âge : droite isochrone.

L'équation générale de la droite qui passe par tous les points est y = ax+b. Sa pente (son coefficient directeur) est égale à a

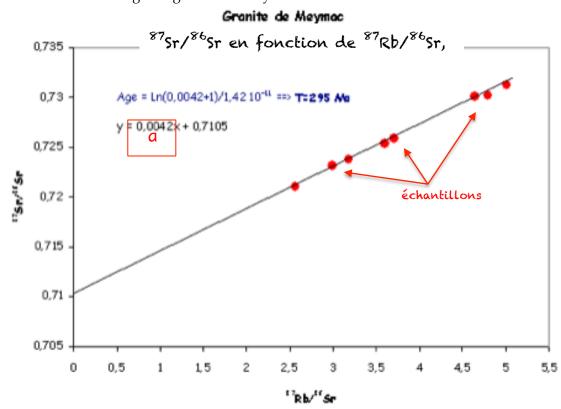
La relation avec approximation affine est : $\underline{a} = \lambda t$, (avec $\lambda = \text{constante de désintégration}$). Donc $\underline{t} = a/\lambda$

Plus la pente sera élevée, plus la roche sera âgée.

Partie 2 : réalisez la datation

Étude géochronologique

Des échantillons ont été prélevés dans un secteur couvert par les cartes géologiques de Meymac, Ussel et Bugeat au 1/50.000. Voici les résultats isotopiques obtenus sur 6 échantillons du granite de Meymac.


Les teneurs en Rb et Sr (en ppm ou partie par million ou mg/g) sont données à titre indicatif

Granite de Meymac				
n° échantillon	Rb (ppm)	Sr (ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr
9517	228	257,5	2,56	0,72103
9518	260	252	2,99	0,72321
9519	258,5	235	3,18	0,72381
9520	263	212	3,59	0,72537
9521	319	249	3,71	0,72597
9522	365	211	5,01	0,73135

Si on reporte les valeurs pertinentes sur un graphique on obtient une droite dont l'équation générale est

$$y = ax + b$$
 avec $a = e^{\lambda t} - 1$ donc $t = Ln(a + 1) / \lambda$ avec $\lambda = 1.42 \cdot 10^{-11}$

- En utilisant le fichier Excel joint, construisez le graphique permettant la datation, imprimez votre graphique titré et légendé ;
- Réalisez le calcul de l'âge du granite de Meymac.

